米勒電容、米勒效應和器件與系統設計對策

搞電力電子的同學想必經常被“米勒效應”這個詞困擾。米勒效應增加開關延時不說,還可能引起寄生導通,增加器件損耗。那麼米勒效應是如何產生的,我們又該如何應對呢?。”

我們先來看IGBT開通時的典型波形:

上圖中,綠色的波形是GE電壓,藍色的波形是CE電壓,紅色的波形是集電極電流IC。在開通過程中,GE的電壓從-10V開始上升,上升至閾值電壓後,IGBT導通,開始流過電流,同時CE電壓下降。CE電壓下降過程中,門極電壓不再上升,而是維持在一定的電壓平台上,稱為米勒平台。在這期間,CE電壓完全降至0V。隨後GE電壓繼續上升至15V,至此整個開通過程完成。

IGBT門極電壓在開關過程中展現出來的平台稱為米勒平台。導致米勒平台的“罪魁禍首”是IGBT 集電極-門極之間寄生電容Cgc。由於半導體設計結構, IGBT內部存在各類寄生電容,如下圖所示,可分為柵極-發射極電容、柵極-集電極電容和集電極-發射極電容。其中門極與集電極(or漏極)之間的電容就是米勒電容,又叫轉移電容,即下圖中的C2、C5。


                                                                                                                       IGBT的寄生電容

在IGBT橋式應用中,如果關斷沒有負壓,或者開關速度過快,米勒電容可能會導致寄生導通。如下圖,兩個IGBT組成一個半橋,上下管交替開通關斷,兩個管子不允許同時導通,否則不僅會增加系統損耗,還可能導致失效。當下管IGBT開通時,負載電流從下管流過,CE間電壓從母線電壓降至飽和電壓Vcesat。而此時,上管IGBT必須關斷,CE間電壓從飽和電壓跳變到母線電壓。上管電壓的從低到高跳變,產生很大的電壓變化率dv/dt。dv/dt作用在上管米勒電容上,產生位移電流。位移電流經過門極電阻回到地,引起門極電壓抬升。如果門極電壓高於閾值電壓Vth,則上管的IGBT會再次導通,並流過電流,增加系統損耗。


怎麼判斷是否發生了寄生導通呢?

一個實驗幫助理解和觀察寄生導通。在雙脈衝測試平台中,讓上管在0V和-5V的關斷電壓條件下,分別作兩次測試,觀察下管的開通波形。當Vgs=-5V時,下管開通電流的包裹面積,明顯小於當Vge=0V時的電流包裹面積,充分說明,當Vge=0V時,有額外的電流參與了開通過程。這個電流,就是來自於上管的寄生導通。

如何避免寄生導通?

從器件角度看,有幾個重要的參數:

低米勒電容 - 米勒電容越小,相同的dv/dt下,位移電流越小。這一點,英飛凌IGBT7和CoolSiC™ MOSFET尤其出色。以FP25R12W1T7為例,它的米勒電容Crss僅有0.017nF,相比同電流IGBT4的0.05nF,減少了近2/3。

2  高閾值電壓 - 閾值電壓如果太低,米勒效應感應出的寄生電壓就很容易超過閾值,從而引起寄生導通。這一條對於IGBT不是問題,絕大部分IGBT的閾值在5~6V之間,有一定的抗寄生導通能力。但SiC MOSFET不一樣,因為SiC MOSFET溝道遷移率比較低,大部分SiC MOSFET會把閾值做得比較低(2~4V),這樣雖然可以提高門極有效過驅動電壓Vgs-Vth,進而降低SiC MOSFET的通態電阻,但是米勒效應引起的門極電壓抬升就很容易超過閾值電壓,這一現象在高溫時尤其明顯,因為閾值電壓隨溫度上升而下降。英飛凌CoolSiC™ MOSFET因為採用了溝槽型結構,垂直晶面的溝道遷移率較高,所以可以把閾值做得高一點,而不影響其通態壓降。CoolSiC™ MOSFET閾值電壓典型值 為4.5V,再加上極低的米勒電容,從而具有非常強的抗寄生導通能力。

從驅動的角度看:

1  用負壓關斷。如果米勒電容引起的門極電壓抬升是7V,疊加在-5V的關斷電壓條件下,門極實際電壓為2V,小於閾值電壓,不會發生寄生導通。而如果0V關斷的話,可想而知門極實際電壓就是7V,寄生導通將無法避免。一般電流越大,需要的負壓越深。

2  使用帶米勒鉗位的驅動晶片。米勒鉗位的原理是,在IGBT處於關斷狀態(Vg-VEE低於2V)時,直接用一個低阻通路(MOSFET)將IGBT的門極連接到地,當位移電流出現時,將直接通過MOSFET流到地,不流過門極電阻,自然也就不會抬升門極電壓,從而避免了寄生導通。

                                                                                                       帶米勒鉗位的驅動晶片內部框圖


                                                                                                  典型應用電路

3  開通與關斷電阻分開。寄生導通發生時,位移電流流過關斷電阻,從而抬升了門極電壓。如果減小關斷的門極電阻,則可以降低門極感應電壓,從而減少寄生導通的風險。

總 結

總結一下,功率器件中的米勒效應來自於IGBT或MOSFET 結構中的門極—集電極/漏極之間寄生電容Cgc 或Cgd。米勒電容可能會引起寄生導通,從而導致系統損耗上升。抑制米勒寄生導通,要注意選擇具有較低米勒電容,或者是較高閾值電壓的器件,驅動設計上可以選擇負壓驅動、米勒鉗位、開通及關斷電阻分開等多種方式。

參考閱讀

IGBT驅動電路中的鉗位電路

分立式CoolSiC™MOSFET的寄生導通行為研究

IGBT門極驅動到底要不要負壓


文章來源:英飛凌工業半導體
請掃描二維碼關注英飛凌工業半導體微信

★博文內容參考自 網站,與平台無關,如有違法或侵權,請與網站管理員聯繫。

★文明上網,請理性發言。內容一周內被舉報5次,發文人進小黑屋喔~

參考來源

false: https://mp.weixin.qq.com/s/bkAfLwsQ7SqAtMk7BJs-wg

評論